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This paper is devoted to a discussion of the notion of localizability for phonons, 
i.e., quasiparticles arising from the harmonic vibrations of a system of n atoms 
bound to one another by elastic forces. The natural tools for the analysis of 
iocalizability are the projection operators E(A) acting on the Hilbert space of 
one-phonon states, where A is an arbitrary subset of the set that consists of n 
vectors specifying the equilibrium positions of n atoms. The expectation value of 
E(A) is the probability that the phonon belongs to the atoms whose equilibrium 
positions are characterized by the elements of A. For a strongly localizable 
phonon all of the projection operators E(A) commute wiO one another, whereas 
in the case of a weakly localizable phonon the operators E(A0 and E(A2) do not 
commute when Ai and A2 overlap. With the aid of the Jauch-Piron quantum 
the~y of localization in space, the present paper describes the method of obtain- 
ing E(A) and also shows that if in the system of n atoms there exist normal modes 
of zero frequency, then the phonon is only weakly localizable. Given the explicit 
expression for E(A), one can define the number-of-phonons operator as well as 
the quasiparticle analogue (given in a companion paper) of th e Wigner distribu- 
tion function. 

1. I N T R O D U C T I O N  

In  q u a n t u m  mechanics  to each e l emen ta ry  ques t ion  concern ing  the state 
o f  a sys tem there  co r r e sponds  a p ro jec t ion  o p e r a t o r  whose  expec ta t ion  value  
gives us the p r o b a b i l i t y  o f  ob t a in ing  a posi t ive  answer  (von N e u m a n n ,  1955; 
Emch,  1972). In  par t i cu la r ,  m a n y  inves t iga t ions  o f  l o ~ l i z a b i l i t y  for  par t ic les  
can be fo rmu la t ed  in te rms o f  p ro jec t ion  ope ra to r s  E(A),  where  A is some 
measu rab l e  subset  o f  space. The  E(A)  are  supposed  to descr ibe  a p r o p e r t y  
o f  the par t ic le ,  the p r o p e r t y  o f  being local ized in A. Precisely speaking,  if  
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the system is prepared in the normalized state 13>, then the probability of 
finding the particle in A is equal to the expectation value of E(A), i.e., 
<3 I E(A) 13>- 

For a wide classof elementary particles, the construction and analysis 
of the properties of E(A) was initiated by Mackey (1953, 1958) and Wight- 
man (1962) and has been generalized by Jauch and Piron (1967); the reader 
will also find an interesting discussion of this approach in the thesis by 
Amrein (1969). The most important results of these fundamental studies can 
be stated as follows: (i) if it is possible to localize the particle in an arbitrary 
finite region of space, then this particle is either strongly or weakly localiz- 
able; (ii) for strongly localizable systems all of the projection operators 
E(A) commute with one another, whereas in the case of weakly localizable 
particles the operators L'(A~) and /~(A2) may not commute if A1 and A2 
overlap; (iii) restricting attentionto strongly localizable systems, the prob- 
ability that the particle lies in A can be expressed in terms of a positive- 
definite probability density in x space; (iv) such a probability density no 
longer exists for weakly localizable systems. 

As a matter of fact, the special application which guided the develop- 
ment of the general formalism proposed in the above-mentioned papers was 
the study of the properties of E(A) for relativistic particles (Newton and 
Wigner, 1949). Our primary intent in the present paper is to show that, aside 
from its original usefulness and meaning, this formalism can also serve 
the purpose of characterizing the notion of localizability for phonons, i.e., 
quasiparticles arising from the collective vibrations of many-body systems 
(Knox and Gold, 1964; Birman, 1974; Lax, 1974). 

To the best of our knowledge, in the literature the problems concerning 
the localization of phonons were first discussed by Jensen (I 964) and Jensen 
and Nielsen (1969). These authors considered the harmonic vibrations of a 
system of n material points bound to each other by elastic forces. First, they 
formulated the eigenvalue problem under the assumption that in the system 
there exist no normal modes of zero frequency. Second, defining 3n annihila- 
tion and 3n creation operators, they investigated the possibility of introduc- 
ing dynamical variables for a single phonon analogous to the variables of 
ordinary particles. Finally, they demonstrated that if the vector x specifies 
the equilibrium position of a material point and 3(x) denotes the 
SchrSdinger function of the phonon in the x-representation, then 
[3*(x) o 3(x)] ~/2 is the probability that when exactly one phonon is present 
it has the position x. Summarizing, Jensen and Nielsen showed that in their 
model the phonons are strongly localizable. 

On the other hand, for certain situations of conceptual interest (an 
inertial frame of reference, no external forces acting on the particles), the 
Hamiltonian of a system of n points is invariant under the infinitesimal 
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translations and rotations (Knox and Gold, 1964, pp. 173-181), even for an 
arbitrary equilibrium configuration possessing no symmetry whatever, and 
thus, in this particular but important case, there exist at least six normal 
modes of zero frequency. 3 [A detailed analysis of the nature and origin 
of such modes is given, for example, in the book by Rajaraman (1982).] 
Consequently, to bring into consideration all admissible motions, displace- 
ments of the center of mass along the three coordinate axes and rotations 
about these axes must be included (treated as being normal modes of zero 
frequency). 

In this paper a generalization of the results of Jensen (1964) and Jensen 
and Nielsen (1969) is proposed, which shows that if the eigenvalue problem 
has nontrivial solutions with vanishing eigenfrequencies, then the phonons 
are only weakly localizable. We present also the method of obtaining the 
projection operators E(A), where A is an arbitrary subset of the set D that 
consists of n vectors x specifying the equilibrium positions of all material 
points. The expectation value of E(A) gives us the probability that the 
phonon belongs to the points (atoms) whose equilibrium positions are char- 
acterized by the members of A. Among. other things, we shall recognize that 
(i) in general the projection operators E(A0 and E(A2) do not commute and 
that (ii) ~--~A E({x})< E(A); equality holds if and only if all the frequencies 
of normal modes are positive. 

The problem of constructing /~(A) is not only an academic game, 
intellectually challenging but of no importance. As shown in a companion 
paper (Banach and Piekarski, 1993), the existence of projection operators 
E(A) acting on the Hilbert space .r of one-phonon states enables us to 
obtain the operator N(A) corresponding to the number of phonons "local- 
ized in" A. In fact, applying the results of Jauch and Piron (I 967) about a 
generalized notion of localizability and using the method of Amrein (1969, 
Section X), we easily verify that the number-of-phonons operator N(A) can 
be regarded as being an extension of E(A) to the Fock space (yon Neumann, 
1955; Emch, 1972). Finally, given the explicit expression for N(A), it would 
also seem particularly important to introduce phase space operators, actually 
quantum pseudofields in phase space, which are compatible with the defini- 
tion of N(A) and which have the property that their expectation values are 
phonon analogues (Banach and Piekarski, 1993) of the Wigner distribution 
functions (Wigner, 1932; Klimontovich, 1975). Such phase space operators 
could then be applied in a number of investigations, especially in studies 
concerning the derivation of the Boltzmann-Peierls equation (Beck et al., 
1974; Gurevich, 1980). 

3We postulate that the points are not all collinear. Clearly, due to the possible extra properties 
of the system, i.e., the properties which cannot be predicted by symmetry, some additional 
normal modes with vanishing eigenfrequencies may occur accidentally. 
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By way of digression, the ideas of our two papers are very universal 
and will, for the most part, find almost immediate application in the context 
of other particle systems. Thus, for example, one would like to consider 
such objects as the Wigner distribution functions for relativistic particles. 
Consequently, one might like to show that these functions are consistent 
with, and can be obtained from, the Jauch-Piron description of localization 
in (continuum) space. 

In connection with our system of n points bound to one another by 
elastic forces, we mention here that we take the origin of coordinates at the 
center of mass. The question then naturally arises whether there exists a 
group G of three-dimensional rotations R which transforms the equilibrium 
configuration of points (atoms) into itself. This preliminary paper does not 
allow space for a complete mathematical treatment of these problems, but 
our construction of E(A) is valid for every admissible choice of G; for 
example, in order to reflect some features of disordered and/or amorphous 
solids, we can assume that the system has no symmetry. 

The layout of this paper is as follows. Section 2 introduces the two 
alternative forms of the Hamiltonian in the harmonic approximation. The 
analysis in Section 3 relates to the determination of the most general one- 
phonon states. We start from the description in terms of the traditional 
annihilation and creation operators and then pass directly to a space repre- 
sentation of the phonon. The objective of Section 4 is to construct the 
projection operators E(A). This section closes with a sbort discussion of the 
properties of E(A). Some elementary examples of normal modes of zero 
frequency appear in Section 5. We conclude the paper with final remarks of 
Section 6. The auxiliary technical material is included as an Appendix. 

2. THE HAMILTONIAN OF THE SYSTEM 

2.1. The Eigenvalue Problem 

Following Wigner (Knox and Gold, 1964, pp. 173-181), we consider 
the harmonic vibrations of a system of n material points (atoms) bound to 
one another by elastic forces. Let D denote the set of n vectors x specifying 
the equilibrium positions of n points; we take the origin of coordinates at 
the center of mass. An atom will be labeled by x. To the atom x belong a 
displacement vector U(x) and a momentum vector P(x), and we shall use 
subscripts a, fl, ~, . . . .  to denote their components U~(x) and P~(x) in a 
Cartesian coordinate system. The Hermitian operators corresponding to 
U(x) and P(x) will be denoted by U(x) and P(x), respectively. These 
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operators satisfy the commutation relations of the form 

[O~(x), 6a(x')] =0, [/3~(x),/3a(x')] =0 (2.1a) 

[U~(x),/3a(x')] = ih 5.,p ~,~, (2.1b) 

In equation (2. I b) the symbols 5~,p and ~,~, stand for the Kronecker deltas, 
and h is Planck's constant divided by 27r. 

Restricting attention to the small vibrations of atoms about their equi- 
librium positions, we can introduce phonons on the basis of the harmonic 
approximation in which the system is described by the Hamiltonian 

A 1 P (x )oP(x )+~  ~ ~(x, x ')o [0(x)| (2.2a) 2m--7 X,X' 

where 

]~(ooo) :=  E (ooo) (2.2b) 
X x ~ O  

Here mx is the mass of the x atom, and the notation indicates that this mass 
depends on x. The [~] is the force constant matrix whose components in a 
Cartesian coordinate system will be denoted by ~.~(x,  x'). Clearly, the 
matrix [~] is positive-semidefinite, real, and symmetric (Birman, 1974). 

It is well known that the elastic vibrations of the system can be built 
up of normal modes. To bring into consideration all possible motions, we 
specify a complete set of real vectors e(x I J), where j is an integer which 
runs from l to 3n, obeying the following conditions: 

e~(x I j)ep(x' I J) = 6~,p 5x,x, (2.3a) 
J 

Z ea(x I j)e~(x [j ' )  = ~j,j, (2.3b) 
~,x 

Irrespective of degeneracy, the three-component functions e(o I J) are defined 
as being "eigenvectors" of the so-called dynamical matrix [K]: 

K~,a(x, x') := (m,,m,,,)-l/2~,~,o(x, x') (2.4) 

Thus 

E K~,a(x, x')er I j ) =~j2ea(x ] j )  (2.5) 

The eigenvalues are denoted by f~j2. They are real, because the matrix [K] 
is real and symmetric, and they are nonnegative, since the potential energy 
V of the system is assumed to be nonnegative. By convention, thefi'equeneies 
f~j are such that f~j_>-0 for e v e r y j ( j =  1 . . . .  ,3n). 
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Of course, it may happen that one or more eigenfrequencies are zero. 
This happens, for example, when the potential energy V of the (finite) system 
is invariant under the infinitesimal translations and rotations; an arbitrary 
inertial frame of reference, no external forces acting on the particles (Knox 
and Gold, 1964, pp. 11, 174). (In Section 5, we discuss the important 
examples of normal modes of zero frequency.) In order to study the notion 
of localizability for the most general case, we postulate that 

f~j=O if j = l , . . . , d  (2.6a) 

and that 

f~j>0 if j=d+ 1 , . . . ,  3n (2.6b) 

2.2. The Collective Operators 

Applying the eigenvalues and eigenvectors of the dynamical matrix [K], 
our next task is to introduce 3 n - d  different annihilation operators t~j and 
3 n - d  different creation operators fij-+ through the definitions 

t~j:= ~ I(mx~jl'/2 
[ \ - ~ - 1  [e(x I J) ~ O(x)] 

+ i  - -  I j )  o t2~imxf~j) [e(x P(x)] (2.7a) 

, , + .  I(mxfl7] 1/2 
aj .=~. I \  2h / [e(x I j )  o 0 (x ) ]  

X 

-i(1---~-]'12te(x I j )  o P(x)]} (2.7b) 
\2tim,f~/ 

in which 

j =  d+  1 . . . . .  3n (2.7c) 

The fact that in the present case f~j= 0 when j =  1 . . . . .  d precludes using 
(2.7a) and (2.7b) to define t~j and dj+ for j =  1 . . . .  , d. Consequently, the 
remaining 2ddegrees of freedom will be represented by the collective opera- 
tors Uj and Pj: 

Uj:=Y. (mx)U2[e(x [ j )  o 0(x)] (2.8a) 
X 

/3j:=y, (m,,)-U2[e(xij)o P(x)] (2.8b) 
X 

(2.8c) j = l  . . . . .  d 
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From (2.7) together with the canonical commutation relations (2.1) for 
b',(x) and P~(x) it follows that the operators ~j and af obey the commuta- 
tion relations characterizing annihilation and creation operators for Bose 
particles" 

[aj, ~t] = "+ " [aj , ,~]-] = 0 (2.9a) 

[~j, ~ ]  = 6j., (2.9b) 

To obtain (2.9), we have made use of the orthonormality rule (2.3b). In the 
same way, one can prove that ~ and Pj are canonically conjugate variables 
which commute with the 2 (3n-d)  annihilation and creation operators 
describing oscillatory motion: 

A ~ ^ A 

[Uj, U,] =0, [Pj, P,] =0 (2.10a) 

[Uj, P,] = iliaj., (2.lOb) 

[~j, bt]=[fi +, (,rt] =0 (2.10c) 
A A Aq- 

[as, p,] = [a s ,/31 = 0 (2.10d) 

Beginning from (2.3a), we easily find that 
d 

U(x) = E (mx)-U2e( x I J ) ~  
j= I 

3. [ /i ,,/2 
+ Z I ~ )  e(xlj)(a/+a+) (2 .11a)  

j = d +  1 

d 

P(x)= y' (mx)W2e(xl j)Pj  
j = l  

- i  Z e ( x l "  A ^+ j ) ( a s - a  j ) (2.116) 
j = d +  I 

2.3. The Alternative Form of the Hamiltonian 

If we substitute (2.11) into (2.2a), then by use of (2.3b), (2.5), and (2.6) 
we obtain 

d 3 n  

H =  E ~P~+ • hnJ(�89 (2.12) 
j = l  j = d + l  

This completes the derivation of the alternative form of the Hamiltonian as 
given by (2.2a). 

The result (2.12) shows that the Hamiltonian/t  of the system is com- 
pounded of two physically different parts, one of which arises from the 
existence of d independent eigenvectors with vanishing eigenfrequencies, and 
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the second from the existence of oscillatory movement. Note that the first 
expression on the rhs of (2.12) has the form of the Hamiltonian for the 
free particle of unit mass located in  the d-dimensional space R d. Since the 
"position-momentum" operators (U j, Pj) commute with the annihilation- 

A A-I- creation operators (aj, aj ), the motion of this abstract particle can be treated 
separately. 

In the Heisenberg picture, the state of the system is identified as the 
corresponding., SchrSdinger state at time t = 0, and the evolution in time of 
the operator A acting on the Hilbert space of all quantum states is given by 

fl(t)=exp(~It) fl exp(-hfflt ) (2.13) 

In particular, by placing (2.12) into (2.13), we conclude that 

~(t)=~+Pit, Pj(t)=Pj (2.14a) 

^ ^+ - " ~+ (2.14b) ~j(t)=exp(-if~/) aj, aj (t)-exp(t~/) aj 

3. DEFINITION OF THE ONE-PHONON STATES 

3.1. The Schr6dinger Function in the j Representation 

Let 13A) and 13e) be the states used in the quantum mechanical 
description of the systems A and B whose Hamiltonians are given, respec- 
tively, by 

d 

HA: = y. �89 (3.1a) 
j=J 

and 
3n 

/tB := E h~QJ(�89 (3.1b) 
j = d + l  

Clearly, since there is no interaction between A and B, the Hamiltonian of 
the composite system A + B is equal to /~a +/4B. We can now choose for 
the state of A + B  the product of ]3A) and [3s).  

The ground state of B will be denoted by ]0B); this state is unique and 
obeys the condition of stability: 

fijl0B)=0 for j=d+ 1 . . . . .  3n (3.2) 

The state ]0n) contains no phonon and is therefore interpreted as the vacuum 
of the theory. By far the Hilbert space most advantageous for the second 
quantization is the Fock space; we reserve the symbol ~ B  to denote it. 
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Characterizing ~ s ,  each state in ~ n  can be approximated as closely as we 
wish by a state obtained from lOs) by acting on the vacuum with an appro- 
priate polynomial in the creation operators ~j+. 

Although our method accommodates every state of A, for simplicity we 
postulate that the "vector" 13A), which is chosen once and for all, obeys the 
following conditions: 

[  .13A> = o, j =  1 . . . .  , d (3.3a) 

(3AIPjl3A)=0, j = l  . . . . .  d (3.3b) 

Because the canonically conjugate operators ~ and /3j have continuous 
spectra ranging from minus to plus inifinity, a proof of the existence of the 
state 13A) satisfying (3.3) can be constructed using a slight variation of the 
ideas proposed, e.g., in Fong and Rowe (1968) and Bauer (1983); the [3A) 
is not unique, however. 

Von Neumann's (1955) exposition of the principles of quantum mech- 
anics shows that each observable on a system A or B is also one on the 
composite system A + B. Consequently, if we consider the particular state of 
A + B, namely, the state 

:= 13A)| 10 > (3.4) 

then we easily verify that 

(~l ~ l  ~) = 0 when j =  1 . . . .  , d (3.5a) 

when j = l  . . . . .  d (3.5b) 

~ij! ~) = 0 when j = d + l  . . . . .  3n (3.5c) 

Assuming that the states 13A) and 10n) are normalized, we arrive at the 
following expression for the zero-point energy E0 := (~ I/41 ~) : 

3n 

Eo=t I/ AI >+�89 E  taj (3.6) 
j = d +  1 

From 1~) a complete space ~ of states can be obtained by successive 
application of the creation operators ~i]. Of course, if I-5) lies in ~ ,  then 
there exists exactly one element [-~s) of ~ s  such that 1.~)= I3A>| I~B>. 
Now, let us observe that equations (3.5a) and (3.5b) are still valid when 
we replace ]~) by [.5) in these equations. Furthermore, by appeal to 
(2.10d) we see that for normalized states [~)  the (-~[/tA [-~) is equal to 
(~ [HA]~). Generalizing, we may say that the replacement of I~) by [.~) 
does not affect any^of the expectation values of the operators represented 
in terms of ~ and Pj alone. Here and henceforth, we shall call the state [~). 
belonging to ~ the phonon state. 
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The most general one-phonon state is 
3n 

13> := Z 3A21r 
j = d + l  

where 

(3.7a) 

3n 

Z I&l 2= 1 (3.7b) 
j = d +  I 

It will be convenient to use the symbol jr to signify the Hilbert space 
spanned by the one-phonon states. We shall refer to 3j as the Schr6dinger 
function of the phonon in the j representation; generally, the 3j is complex. 

3.2. Transition to a Space Description of Phonons 

We can now transform to the x representation by introducing the 
function 

3n 

3~(x):= Z 3je~(x I J) (3.8) 
j = d + l  

which defines the position-space Schr6dinger function belonging to 3j- 
Directly from (3.8) and (2.3b) we find that 3~(x), a = 1, 2, 3, are complex- 
valued fields subject to the constraints 

Z e,(x [ j )3~(x)=0 ,  j = l , . . . , d  (3.9) 

In view of (2.3) it is straightforward to facilitate conversions between 3j 
and 3~(x) : 

3j = y~ e,(x [ j )3 , (x ) ,  j=d+ 1 . . . . .  3n (3.10) 
g,x  

By substituting (3.10) into (3.7a), we arrive at 

13> = Y~ 3.(x) f~+(x) I #> (3.1 la) 

where 

3n 

~.(x):= ~ e.(x [j)aj (3.11b) 
j = d + l  

In order to underline the formal similarities between the present theory and 
the theory of Mandel (1964, 1966), we shall call ?'~(x) the detection operator. 
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It can easily be shown that if 13) and [ S )  are members o f ~  ~ then 
3n 

<31~) = E 3*~J=E 3*(x)~o(x) (3.12) 
j = d +  • a , x  

Let 0_ 2 be a Hilbert space of complex-valued, three-component functions on 
D with the inner product given by the third expression in (3.12), and define 
the closed subspace L 2 of U_ 2 by saying that its elements satisfy the constraints 
(3,9). Introduce a mapping on L 2 with range ~ o )  by letting the three- 
component function 3r have image ]3)s~ff  o), where 13) is obtained 
from 3a(x) by putting (3.10) into (3.7a). The mapping is clearly linear, and 
(3.12) ensures that the mapping is one-to-one. Also, it is obvious that each 
vector 1 3 ) E ~  (1) is the image of some member of L 2. In summary, the 
mapping is a one-to-one linear norm-preserving mapping of L 2 onto ~(I) .  

The above facts help to explain why it is not possible, in the particular 
but conceptually important case when there exist normal modes of zero 
frequency (d#0),  to leave out the constraints (3.9) in the definition of the 
position-space Schr6dinger function. Also, we conclude that the function 
3, (x)  = fi~,, 3~,~, is a Schr6dinger function (for the description of a phonon 
in the fully localized state) if and only if d= 0. 

4. THE GENERALIZED SYSTEM OF IMPRIMITIVITIES 

4.1. The Projection Operators/~(A) for a Strongly Localizable Phonon 

As explained in the Introduction, the notion of localizability for a 
phonon can be formulated in terms of projection operators E(A) acting on 
~r where A is an arbitrary subset of D at a given time t. The projection 
operator/~(A) corresponds to a property of the phonon, the property of 
being localized in A. Precisely speaking, if [3)denotes  a normalized one- 
phonon state, then the expectation value of E(A), i.e., (31~(a)13), is 
the probability that the phonon belongs to the atoms whose equilibrium or 
average positions are characterized by the elements of A. [In view of (2.10c), 
(2.10d), and (2.14a) one can see that assuming only that (31Uj(t)[3) and 
<# l PAt)l e> vanish initially is enough to guarantee the fulfilment of the 
relations <310At)13>=0 and <3lPAt)13>=0 for all t>0  and all 
13)~( ' ) . ]  

We first consider the case in which the normal modes of zero frequency 
fail to exist (d= 0). For d = 0, since the 3~(x) are not subject to the con- 
straints (3.9), the projection operators E(A) take the form 

E(A) 13> := E ZA(x)3.(x) r'~+(x) I #> (4. la) 
~t,x 
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where 2:a(x)= 1 if x~ A, and 0 if x eD\A. Alternatively, we may regard J~(A) 
as being the linear mapping of g_2 into itself (0_ 2 = L 2) and thus write 

[/~(A)3 ](x) = XA(x)3(x) (4.1 b) 

Because of (4.1), we can identify localizability with the existence of a 
real-valued, positive function ~ 13~(x) 12 on D such that 

(31/~(A)13>= Y'x,A [~  13~ (4.2) 

when A c D  and 13>e~ "~. Also, from (4.1) it is not difficult to conclude 
that all of the E(A) commute with one another. 

As is by now well known (Wightman, 1962; Jauch and Piron, 1967; 
Amrein, 1969), one can think of the requirement that the identity (4.2) exists 
as a precise way of stating that the position operator 

:=E x[~'+(x) ~ r (4.3) 
X 

for a single phonon exists (Jensen, 1964; Jensen and Nielsen, 1969) and that 
its components ~ are simultaneously observables. Consequently, we can say 
that the definition (4.1a) relates to the phonon which is localizable in the 
ordinary sense (strongly localizable) (Wightman, 1962). 

Equation (4.1a) is valid for a given (but otherwise arbitrary) time. Of 
course, the projection operator E,(A) for t > 0 is associated with the pro- 
jection operator Eo(A) for t=  0 by 

/~,(A) = exp(~ H~t)/~0(A) exp( -  ~/t~t) (4.4) 

A systematic analysis of the properties of strongly localizable phonons 
can be found in the paper by Jensen and Nielsen (1969). If d=0,  their 
approach explains in what sense it is true that, to study the notion of localiz- 
ability for phonons, it is not necessary to use the concepts beyond those 
already appearing in the treatment of ordinary particles, i.e., classical 
particles of positive mass. 

4.2. The Projection Operators/~(A) for a Weakly Localizable Phonon 

Let us glance back now at the case in which one or more eigenfrequenc- 
ies are zero (d~0).  In analogy with the discussion in Subsection 4.1, our 
purpose here is to show how the projection operators bS(A) for d ~ 0  should 
in fact be chosen. At first sight, it is tempting to try to characterize these 
operators by (4.1). Why does this not describe the phonon as a localizable 
system? The answer is that the/~(A) carry vectors obeying the constraints 
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(3.9) into vectors which do not obey them, so/~(A) is not a well-defined 
operator in the manifold of states, and, just as in the case of photons 
(Wightman, 1962; Jauch and Piron, 1967; Amrein, 1969), the conventional 
approach based upon (4.1b) by no means suffices to provide a precise tool 
for the analysis of localizability. 

So as to be able to arrive at the projection operators/~(A) acting on a 
proper subspace L 2 of 0_ 2, by use of linear combinations of e( o l J), 1 <j<d,  
we first introduce for each A c D  a set of real vectors eA(x IP), xsD, such 
that ifp and p' are integers running from 1 to d/, (da<d), then 

Z ca( x [P) o ea(x [p') = 8p,p, (4.5) 
X~t~ 

1. As a step toward constructing 4 eA(xlp), let e(ol j ) ta ,  l<j<_d, 
denote the restriction of e(o l J), 1 <j<d,  to A, and consider the set 
of linearly independent three-component functions {e(o [Jp)rA ;peFa}, 
FA := { 1, 2 . . . . .  dA}, such that dA < d, jp~ { I, 2 . . . .  , d}, and every function 
e(o ]J)IA, 1 <j<d,  can be written as a linear combination of e(o [Jp)IA, 
p~FA. In view of these statements, we easily conclude that the functions 
e(o [Jp) tA exist and that if n~ signifies the number of elements in A, then the 
following conditions are automatically satisfied: 

da < min(d, 3nA) (4.6a) 

dD=d, Fn = {1, 2 . . . .  , d} (4.6b) 

We now want to say that, although the choice of the subset 
{e(o I Jp)l~ ;pEFA} of the set {e(o ]J)rA ;j~ro} is not in general unique, the 
number dA depends only on A. 

2. The next stage in the derivation of eA(x [ p) is to obtain the relations 

P 

ea( ~ [P)= ~. cpa.p'e( ~ IL')la, peFa  (4.7) 
p ' = l  

in which the real numbers cap, p,, cap, p > 0, are uniquely determined by substitut- 
ing (4.7) into (4.5) and then solving the resulting system of equations with 
respect to C~p,. This is a standard procedure of orthogonalization (Sansone, 
1959; Szeg6, 1939). 

3. Finally, after calculating cap.p, and replacing e(o [Jp')ta by e(o [jp,) in 
equation (4.7), we can regard ea(o I P), p~FA, as being a three-component 

4The reader who is not interested in the details regarding the construction of eA(x I P) may 
omit points 1-3. For the definition of E(A) in terms of eA(xlp) see equations (4.9a) 
and (4.9b). 
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function on D. Clearly, using (4.6b) and (2.3b), we find that 

e~ ~ l P ) =  e(o I P), p = 1, 2 . . . . .  d (4.8) 

This observation completes our description of  the construction of  ea(o [ p), 
p~Fa. 

In the problem of localizability considered here, the projection opera- 
tors/~(A) acting on g(~) take the form 

~(a) 13> := Y, za(x)3o(x; a) ~'~+(x) I ~) (4.9a) 
t~,X 

where 

3~(x; A) :=3~(x ) -  ~ ~ [e•(x ' Ip) o 3(x')]e~(x IP) (4.9b) 
p~FA x'~A 

Directly from (4.9b) and (4.5) we can prove that 

Y~ Y' e~ (x lp )3 , (x ;A)=0 ,  peFA={1 ,2  . . . . .  dA} (4.10a) 
a x~A 

Y Z e~(x l j )3~(x ;A)=0 ,  j e F o = { 1 , 2  . . . . .  d} (4.10b) 
a x~A 

Equation (4. l 0b) is a consequence of (4.10a), because our method of obtain- 
ing eA(o]p) delivers the three-component function e(~ as an 
exhibited linear combination of e~o I P) IA, P ~ Fa. Further, while the proce- 
dure we have used in arriving at E(A) is based upon a particular choice of 
the set {eA(o I P); p~FA} obeying (4.5), the expression on the rhs of (4.9a) 
is completely independent of it, as elementary inspection shows. 

Now, looking back at the properties of 3~(x; A), we see that the projec- 
tion operators E(A) as given by^ (4.9) carry "vectors" 13) satisfying^ the 
constraints (3.9) into "vectors" E(A) J3)  which also satisfy them, so E(A) 
is now a well-defined projection operator in the manifold L 2 of one-phonon 
s t a t e s  (L 2 c ~_2,/.,2 ~ R_2) ; some traditional aspects of the theory of localizable 
systems, however, are lost in the process. Indeed, in the important case for 
which d r  one has instead of (4.2) a weaker relation, namely 

Equality holds if and only if/~(A) [ 3 ) ~  [ 3) .  Consequently, the probability 
that the "event" corresponding to E(A) will occur when the system is 
prepared in the normalized state [ 3 ) e  g o~ cannot in general be identified 
with the simple expression 5 on the rhs of (4.11). We may understand this 

5We remark once more that  the expression on the lhs of  (4.1 !) is the probability that  the 
phonon  belongs to the atoms whose equilibrium or average positions are characterized by the 
elements of A. 
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immediately by observing that here the projection operator /~(A) is not 
simply multiplication by the characteristic function ZA(o) of  the set A. [For 
comparison, see equation (4.1b).] 

We also mention that E(At c~ A2)=/i(At)E(A2) =/~(A2)/~(A,) if the sets 
A~ and A2 are disjoint or one of  them is a subset of the other. At the same 
time, from (4.9) it follows that the operators J~(AI) and/~(A2) do not com- 
mute when Ai and A2 overlap. Since the property of E(A) just mentioned 
resembles quite closely a result first established by Jauch and Piron (1967) 
and Amrein (1969) in the context of the theory of relativistic particles of 
mass zero, we shall adapt the original terminology of Jauch, Piron, and 
Amrein and say that the proposition (4.9) describes the phonon as a weakly 
localizable system. 

One final word regarding/~(A). I f  one considers a subset A of the set 
D such that 6 3nA_<d and dA = 3na, then the "probability of finding the 
phonon in" A is equal to zero. This somewhat surprising fact, which is of 
interest when one or more eigenfrequencies are zero, does not describe of 
course any universal property of E(A); rather, it reflects merely the particular 
choice of A in terms of which we decided at the outset to represent E(A). 

The general properties of/~(A) are summarized in Section 4.4. 

4.3. The Unitary Representation of the Group G of 
Three-Dimensional Rotations 

Let us take the origin of coordinates at the center of mass, and consider 
a situation in which the whole system has a symmetry, i.e., let there be 
a group G of three-dimensional rotations R transforming the equilibrium 
configuration of a system of  n atoms into itself. 

We wish to investigate the effect of R e G  on 1 3 ) ~ .  (1). Therefore, for 
each R eG we introduce the linear mapping ~(R): ~,~ff (I):::> o~(I) defined by 

3n 

E 3j.,,aflr (4.12a) 
x j = d +  1 

where 

3n 

3J, R := E MR(j,j')3j' (4.12b) 
j ' = d +  I 

~R(j,j') := ~ e (x l j )  o [Re(R-ix Ij')] (4.12c) 
x 

6We recall that da signifies the number of three-component functions e~(o [ p), p = 1, 2 . . . . .  d~ 
(da < d), satisfying (4.5) and na represents the number of elements in A. 
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In order to be sure that ~., R. ,3 , (R-~x)  satisfies the constraints (3.9) when 
3~(x) does, it is sufficient to establish the following property of ~ ( j , j ' ) ,  
j , j '= l ,2  . . . . .  3n: 

Third Orthogonality Rule. If j # j '  and ~+.+~j,, then 

,~R(j, j ' )  =0 (4.13) 

Proof If we multiply each side of (2.5) by et~,,(x" I j )  and then sum with 
respect to j, in view of (2.3a) we find that 

3n 

K:,e(x, x') = E n / e : (  x I j )e , (x ' l j )  (4.14) 
j = l  

We may now put (4.14) into 7 

~. R,~,a,K,~,a(R-'x, R-'x') =Y, K~,a,(x, x')Ra, e (4.15) 
t~' fl '  

then multiply both sides of (4.15) by e~,(xtj)e~(R-'x'lj'), then sum the 
result with respect to (a, fl, x, x'), then make use of (2.3b). Thus we obtain 

(n j  = -  nj2,)NR(j, j ' )  = 0 (4.16) 

and so ~R(j,j')=O whenj:/:j '  and ~ j ~ j , .  �9 

We say that ~(R), R e G, is the operator whose application to 13)e ~ o) 
yields the one-phonon state ~(R)I3)  rotated by R. Now, directly from 
(4.12a) and (3.12) we conclude that R ~ ~(R) is the unitary representation 
of G in ~(~). 

Next, we should remark that if R e G, then there is a Hermitian operator 
6(R) corresponding to R such that O(R) 14) = 0 and 

~(R) = exp[-i0(R)]  (4.17) 

The actual calculation of ~(R) rests heavily, indeed essentially, on the ideas 
proposed in Jensen and Nielsen (1969). Without going into any of the details 
of the derivation, which can.easily be reconstructed from the original sources, 
here we only note that | is a linear-combination of afaj,, L j  '=  
d+ 1 . . . . .  3n: 

3n 3n 

O(R)= ~, F, 8j, j,(g)~f~j, (4.18a) 
j = d +  l j ' = d +  l 

8*f(R) = 8j,,j(R) (4.18b) 

7One can easily show that K(Rx, Rx') = RK(x, x')R -I for any Re ( ; ;  see, e.g., the book by Lax 
0974, p. 326). 
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Clearly, given (4.17) and (4.18), one will be justified in interpreting ~(R) not 
only as a linear operator on ~ "), but also as a linear mapping of the Hilbert 
space ~ onto itself. (Concerning the precise definition of ~ ,  see Section 
3.1.) Moreover, because of the results of Jensen and Nielsen (1969), we have 

R~[(R-Jx)=exp[i~9(R)] ~'(x) exp[-iO(R)] (4.19a) 

t)j,R = exp[iO(R)] t~j exp[-i~)(R)] (4.19b) 

where 
3n 

~jm: = }-'. ~,(j,j')~j, (4.19c) 
j ' = d +  1 

Some additional properties of the unitary representation R =:-~(R) of 
G in ~ are discussed in the Appendix. 

4.4. The General Properties of Projection Operators/~(A) 

The idea of introducing/~(A), instead of trying to consider the set of 
states localized at a point (Newton and Wigner, 1949), was strongly advo- 
cated by Wightman (1962), Jauch and Piron (1967), and Amrein (1969), 
and it might be worthwhile to reproduce here their concise postulates. How- 
ever, before we can formulate these postulates, we need some additional 
information about our notation. 

The symbol ~ will signify the empty subset of D. Let RA denote the 
set obtained from A by carrying out the rotation R. Suppose that P~ and P2 
are projection operators acting on W(o. The intersection of P~ and P2, 
denoted by P~ c~ P2, is defined as the projection of W(I) onto the larg~t 
subspace contained in the ranges of both P~ and P2. If the ranges of P~ 
and P2 are two orthogonai subspaces of W(~), we shall write P~-I-P2. The 
projection operato~ on W(o with ranges ~ and W(I) will be denoted, 
respectively, 0 and L 

With this notation in mind, the Jauch-Piron axioms for localizability 
in a "region" are as follows: 

I. The following conditions hold: 

/~(~) = 0, /~(D) = I  (4.20a) 

II. If A~ and A2 are disjoint subsets of D, then 

/~(A])_I_/~(A2) (4.20b) 

1II. For any pair & ,  A2 of subsets of D, 

E(A, c~ Az)= ~7(A,) c~/~(A2) (4.20c) 
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IV. The following condition holds: 

E(RA).~(R) = ~(R)/~(A) (4.20d) 

The physical significance of these axioms is as follows: Axiom I says 
that the system has probability 0 of being localized in ~ and probability 1 
of b~ng somewhere; II states that the properties corresponding to E(AI) 
and E(A2) are simultaneously decidable for disjoint subsets AI, A2 of D; III 
expresses the fact that a system which is in both Aj and A2 is also in A~ c~ A2 ; 
IV implies that if 13) �9  ~ o) is a state in which the system is localized in A, 
then 9(R)13) �9162 ~~ is a state in which the system is localized in RA. 

In the terminology of Jauch, P~on, and Amrein, Axioms I-IV state 
that the set of projection operators {E(A); A = D} is a generalized system of 
imprimitivities for the representation R =~ ~(R) of G with base D. In addition, 
we say that the above set of projection operators defines an ordinary system 
of imprimitivities if Axiom III can be replaced by the following. 

III'. The following condition holds: 

/~(A, n A2) =/~(A,)/~(A/) (4.20c') 

Now, it is not difficult to verify that the operators J~(A) as given by 
(4.9) satisfy I-IV. Consequently, for the phonon which is only weakly localiz- 
able, the resulting mathematical object is a generalized system of imprimitivi- 
ties. Similarly, it is easy to show from (4.1) that, in the case of a strongly 
localizable phonon, one obtains the projection operators/~(A) obeying I, II, 
III', and IV; the resulting structure is then an ordinary system of 
imprimitivities. 

Our analysis here is not complete, of course, and for a general discussion 
of problems concerning the notion of imprimitivity see the detailed studies 
by Mackey (1953, 1958), Wightman (1962), Jauch and Piron (1967), and 
Amrein (1969). 

5. EXAMPLES OF NORMAL MODES OF ZERO FREQUENCY 

"It is well known that each motion of the system in which the center 
of [mass] remains stationary can be built up of normal modes. To bring into 
consideration all possible motions, displacements of the center of mass along 
the three coordinate axes and rotations about these axes must be included. 
(We assume that the points are not all collinear.) These displacements may 
be considered normal modes of zero frequency." This is the original state- 
ment of Wigner as translated by Knox and Gold (1964, p. 174). 
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Thus, following Wigner, let us assume now that, in an inertial frame of 
reference, the potential energy 

V:=�89 E O(x, x') o [U(x) |  (5.1) 
X,X' 

is invariant under the (infinitesimal) translations and rotations of a system 
of n atoms (no external interactions). This leads to the specific symmetry 
properties of  the force constant matrix [O] (Madelung, 1978, p. 131): 

*~,p(x, x ' )=  0 (5.2a) 
X' 

X (}~,~(x, x')x~ = E ~o,~(x, x')x~ (5.2b) 
X' X' 

Using (5.2), examination of  the eigenvalue problem [cf. equation (2.5)] 
shows that there are six normal modes of  zero frequency (d=  6). The eigen- 
vectors corresponding to these modes are given by 

e~(x I j )  = (m~M-J)~/2e~(j), j =  1, 2, 3 (5.3a) 

e~(x l J )  = (rex) j/2 ~ e~.p(j)xa, j =  4, 5, 6 (5.3b) 

where 

M : = ~  mx (5.3c) 
X 

e ( j )  o e ( j ' ) =  ~j.j,, ~ , a ( j )  = - ~a,a(j) (5.3d) 

Remembering that the origin of coordinates is taken at the center of mass, 

m~x~ = 0, a = 1, 2, 3 (5.4) 
x 

we can easily prove that the orthonormality rule (2.3b) holds if j =  l, 2, 3 
and j ' = 4 ,  5, 6. In order to obtain the orthonormality rule (2.3b) for j =  
4, 5, 6 a n d j ' = 4 ,  5, 6, we must calculate sa,a(j)  in (5.3b) by applying with 
respect to e(x I J),J= 4, 5, 6, a standard procedure called the Gram-Schmidt 
orthogonalization procedure (Szeg6, 1939; Sansone, 1959). From (5.3d) it 
follows that conditions (2.3b) are automatically satisfied when j, j ' =  1, 2, 3. 

Let us consider a subset A of D such that na = 1 or na = 2. (We remark 
once more that na denotes the number of  elements in A.) We know already 
that/~(A) = 0 whenever dA = 3ha. Since in the present case dA = 3 if nA = 1 
anddA --- 6 = d if na > 2, we immediately conclude that the expectation value 
of  E(A) is equal to zero for every subset A of D obeying n~ = 1 or na = 2. 
These properties of  E(A) cast some light on the important conceptual differ- 
ence between the strongly localizable phonon (d=  0) and the one which is 
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only weakly localizable (d#0).  Indeed, for strongly localizable phonons we 
may easily show that E(A) # 0 if A # ~ and that for every A satisfying nA = 
1 or ha=2 there exists the normalized one-phonon state 1,3> such that 
<3 IE(A) I3> = 1. At the same time, we are aware of the fact that all the 
differences between the results corresponding, respectively, to d= 0 and d # 0  
vanish asymptotically for large values of na and that if nA >> 1, then the two 
formalisms can be used interchangeably. Therefore, just as in the case of 
photons (Amrein, 1969, esp. comments on p. 187), for many practical pur- 
poses one may employ the approximate but simple operator (4.1a). 

6.  FINAL REMARKS 

As noted in the Introduction, the systematic construction of/~(A) 
enables us (Banach and Piekarski, 1993) to obtain the operator N(A) corre- 
sponding to the number of phonons "localized in" A. In addition to these 
considerations, given the explicit expression for At(A), it would also be of 
both conceptual and practical interest to introduce phase space operators, 
actually quantum^pseudofields in phase space, which are compatible with 
the definition of N(A) and which have the property that their expectation 
values are phonon analogues of the Wigner distribution functions (Wigner, 
1932; Klimontovich, 1975). These operators could then be applied in a 
number of investigations, especially in studies concerning the quantum 
theory of transport phenomena. 

Consequently, in a companion paper (Banach and Piekarski, 1993) our 
attention in large part focuses upon such questions as how one might formu- 
late exactly an adequate notion of the Wigner distribution function in terms 
of which to characterize the evolution in time of the phonon system. 

Finally, we mention that the Jauch-Piron system of imprimitivities can 
be used as an organizing principle for the development of the theory dealing 
with relativistic particles; for example, considering a gas of photons, one 
can define the one-particle Wigner distribution function which is consistent 
with the exact expression for the number-of-photons operator first obtained 
by Amrein (1969). 

APPENDIX: THE TRANSFORMATION LAW FOR I~(x) AND P(x) 

The operator ~(R)= exp[-i~(R)]  acting on ~ has one more property 8 
that is very important. Namely, if we make use of (2.11), (3.3), (4.19b), and 

SThe operator ~(R) is introduced in Section 4.3. 
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(4.19c), we find that 

(-~] exp[i~)(R)] U(x)  exp[-i~)(R)]l~5 ) =R(.~I[J(R-~x)  I-~) (A.la)  

(.~[ exp[i~)(R)] P(x) exp[- i6(R)] l .~)  = R<-~I~(R-'x) I~> (m.lb) 

where [.~) is a member of  ~ .  That such is indeed the case may be verified 
by direct if lengthy calculation. For completeness sake, we write down 
explicitly the basic formula that is needed in the proof of (A.1)" 

3n 

aJ, R:= Z . . . .  " ~R( j , j  )as, 
j '  = d +  1 

3n 
1 

j ' = d + l  

+ (f~sff~fl)'/2~R(j,j')(~j,- ~ ) ]  (A.2) 

In obtaining (A.2) we have used only the fact that i f j r  and ~j#~qj,, then 
~R(j , j ' )  = 0. [This is the third orthogonality rule formulated in Section 4.3; 
see equation (4.13).] 

The situation may therefore be summarized as follows. Let 19) be 
any member of ~,~r The important variables, namely, displacements and 
momenta, are given by (.~ [U(x) I~ ) and (.~ IP(x) respectively. We say 
that a collection of these variables forms a pattern of motion. If one subjects 
the state I-~) to a transformation R, 

[.~) ~ exp[-i~)(R)] I.~ ) = ~(R) ] .~) 

then one arrives at the pattern of motion rotated by R, as one should. 
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